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A new laminate model is presented for the dynamic analysis of a laminated circular ring
segment. The di!erential equations which govern the free vibrations of a circular ring
segment and the associated boundary conditions are derived by Hamilton's principle
considering bending and shear deformation of all layers. The author used a new iterative
process to successively re"ne the stress/strain "eld in the viscoelastic layer. The model
includes the e!ects of transverse shear and rotatory inertia. The iterative model is used to
predict the modal frequencies and damping of a simply supported sandwich circular arch.
The solutions for a three-layer circular arch are compared to a three-layer approximate
model.
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1. INTRODUCTION

Laminated composite curved beams have been used in engineering applications for many
years. Design applications of isotropic and curved bars, rings and arches of arbitrary shapes
are assisted by a well-developed theory and proven design guidelines [1}4]. The
development of the theory and design guidelines for composite curved beams is much less
satisfactory. Earlier works are related to the sandwich beams or closed composite rings
[5}9]. The "nite element method was used to study the dynamic response of sandwich
curved beams by Ahmed [5, 6]. Free and forced vibrations of a three-layer damped ring
were investigated by Di Taranto [7]. Lu and Douglas [8] investigated a damped
three-layered sandwich ring subjected to a time harmonic radially concentrated load. Their
paper gives an analytical solution for the mechanical impedance at an arbitrary point on the
surface of the damped structure as a function of the forcing frequency. Furthermore, an
experimental procedure is employed to measure the driving point mechanical impedance as
a veri"cation of the calculated results. The transient response was studied for three-layer
closed rings by Sagartz [9]. The damping properties of curved sandwich beams with
a viscoelastic layer were studied by Tatemichi et al. [10]. Viscoelastic damping in the middle
core layer was emphasized.

Nelson and Sullivan [11] analyzed a complete circular ring consisting of a layer of soft
viscoelastic material sandwiched between two hard elastic layers. The equations which
govern the forced vibration of a damped circular ring were solved by the method of damped
forced modes. Isvan and Nelson [12] investigated the natural frequencies and composite
loss factors of the free vibration of a soft cored circular arch simply supported at each end.
Kovacs [13] solved the problem of free vibrations of a sti!-cored sandwich circular arch. All
0022-460X/01/340653#15 $35.00/0 ( 2001 Academic Press
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the tangential displacement components are assumed to be piecewise linear across the
thickness, thus implying the inclusion of shear deformations and rotary inertia.

The incremental equations of motion based on the principle of virtual displacements of
a continuous medium are formulated using the total Lagrangson description by Liao and
Reddy [14]. They developed a degenerate shell element with a degenerate curved beam
element as a sti!ener for the geometric non-linear analysis of laminated, anisotropic,
sti!ened shells. Bhimaraddi et al. [15] presented a 24 d.o.f. of an isoparametric "nite
element for the analysis of generally laminated curved beams. The rotary inertia and shear
deformation e!ects were considered in this study. Qatu developed a consistent set of
equations for laminated shallow and deep arches [16, 17] . Exact solutions are presented for
laminated arches having general boundary conditions by Qatu and Elsharkawy [18]. The
in-plane free vibrational analysis of symmetric cross-ply laminated circular arches is studied
by Yildirim [19]. The free vibration equations are based on the distributed parameter
model. The transfer matrix method is used in the analysis. The rotary inertia, axial and
shear deformation e!ects are considered in the Timoshenko analysis by the "rst order shear
deformation theory. Vaswani et al. [20] derived a closed-form solution for the system loss
factors and resonance frequencies for a curved sandwich beam with a viscoelastic core by
the Ritz method. He and Rao [21] used the energy method and Hamilton's principle to
derive the governing equation of motion for the coupled #exural and longitudinal vibration
of a curved sandwich beam system. Both shear and thickness deformations of the adhesive
core are included. Equations for obtaining the system modal loss factors and resonance
frequencies are derived for a system having simply supported ends by the Ritz method.

It is well known that the accurate determination of the stress "eld in the laminate
con"gurations is particularly important for &&stress-critical'' calculations such as damping
and delamination. Zapfe and Lesieutre [22] developed an iterative process to re"ne
successively the shape of the stress/strain distribution for the dynamic analysis of laminated
beams. The iterative model is used to predict the modal frequencies and damping of simply
supported beams with integral viscoelastic layers.

The present research extends the iterative laminated model developed by Zapfe and
Lesieutre to the dynamic analysis of a laminated circular ring segment. The current model is
developed for the speci"c case of a simply supported circular ring segment with uniform
properties along its length.

2. GOVERNING EQUATIONS OF MOTION

The geometry of interest and the notation used are shown in Figure 1. As indicated in the
"gure, the ring segment ends are simply supported. Consider the curved sandwich arch with
a circular centreline and a constant rectangular cross-section. The arch consists of three
di!erent layers of homogeneous materials bonded together to form a composite arch.
Subscript i, where i"1}3 is used to denote quantities in the various layers, starting from the
outermost layer, so that layers 1 and 3 represent the elastic layers while 2 represents the
viscoelastic layer. A state of plane stress is assumed, as well as the fact that the materials in
each layer of the arch are homogeneous isotropic. A perfect bonding of the layers and linear
elasticity are also assumed in the analysis. The composite arch is lightly damped and it is
assumed that all the energy dissipated is dissipated in the viscoelastic layer. The
deformation in the radial direction is neglected. An initial cross-section of the "rst layer
such as A

1
A

2
deforms to A@

1
A@

2
as shown in Figure 2. This simply means that the plane

cross-sections in the individual layer continue to remain plane after deformation. Keeping
in mind that the deformation in the radial direction is neglected, such continuous



Figure 1. The geometry of the laminated circular ring segment.

Figure 2. The displacement "eld of the laminated circular ring segment.
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displacements of cross-sections are described by the following displacement "eld:
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In the above equation u
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(u, t) and u
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(u, t) denote the tangential displacements at the

bottom and top surfaces of the "rst layer. Similarly, in the third layer the displacements of
the arbitrary point can be expressed as
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where u
3
(u, t) and u

4
(u, t) denote the tangential displacements at the top and bottom

surfaces of the third layer. The form of the displacement "eld over the domain of the second
layer is
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The functions f (r) and g(r) can be thought of as a shape function through the thickness of the
second layer to account for transverse shear e!ects. The solution of a given problem
requires the determination of the unknown functions u
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standard expressions the strain tensor of each layer can be computed from equations (1)}(3)
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From equation (9), it can be seen that F (r) and G(r) represent the transverse shear strain
"eld through the thickness of the second layer, at a given u-location. While the assumed
form of the shear correction, f (r) and g(r) changes from one iteration to the next, at any
given iteration it can be treated as a known function.
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The strain energy stored in the circular arch is given by
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The kinetic energy, which includes components associated with transverse, in-plane and
rotary inertia, is given by
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where the dots over t
1
, t

2
and t

3
denote the partial derivative with respect to time. The

di!erential equations of motion and boundary conditions are derived using Hamilton's
principle. The equations of motion for the "ve unknown functions, u

1
(u, t), u

2
(u, t), u

3
(u, t),

u
4
(u, t) and w(u, t) are

A
11

L2u
1

Lu2
#A

12

L2u
2

Lu2
#B

15

Lw

Lu
#C

11
u
1
#C

12
u
2
"D

11

L2u
1

Lt2
#D

12

L2u
2

Lt2
, (14)

A
21

L2u
1

Lu2
#A

22

L2u
2

Lu2
#A

23

L2u
3

Lu2
#B

25

Lw

Lu
#C

21
u
1
#C

22
u
2
#C

23
u
3

"D
21

L2u
1

Lt2
#D

22

L2u
2

Lt2
#D

23

L2u
3

Lt2
, (15)

A
32

L2u
2

Lu2
#A

33

L2u
3

Lu2
#A

34

L2u
4

Lu2
#B

35

Lw

Lu
#C

32
u
2
#C

33
u
3
#C

34
u
4

"D
32

L2u
2

Lt2
#D

33

L2u
3

Lt2
#D

34

L2u
4

Lt2
, (16)

A
43

L2u
3

Lu2
#A

44

L2u
4

Lu2
#B

45

Lw

Lu
#C

43
u
3
#C

44
u
4
"D

43

L2u
3

Lt2
#D

44

L2u
4

Lt2
, (17)

A
55

L2w
Lu2

#B
51

Lu
1

Lu
#B

52

Lu
2

Lu
#B

53

Lu
3

Lu
#B

54

Lu
4

Lu
#C

55
w"D

55

L2w

Lt2
, (18)



658 B. KOVAD CS
where A
ij,

B
ij,

C
ij

and D
ij

are given in Appendix B. K
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mass coe$cients, given by
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The kinematic and natural boundary conditions speci"ed at u"0 and u"0 , are given
by
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where F
ij

are constants. For the special case of a simply supported arch, the "rst, second,
third and fourth natural boundary conditions are combined with the kinematic condition,
w"0.

3. SOLUTION FOR A SIMPLY SUPPORTED ARCH

Sinusoidal mode shapes that satisfy the boundary conditions are assumed. Consequently,
the assumed displacements are
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where k
n
"(nn)/0 and j"1}4. Since the motion is now harmonic, it is legitimate to admit

hysteretic damping into the viscoelastic layer by putting complex moduli. The Young's and
shear modulus of the constituent materials are represented by the complex quantities
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denote the material loss factors in extension and shear respectively. Since
the complexes GH
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are used as complex moduli of the middle layer, the di!erential

equations of motion will have complex coe$cients. The substitution of equations (21) into
equations (14)}(18), will result in a set of "ve simultaneous, homogeneous algebraic
equations with symmetric and complex coe$cients. In matrix form, these equations are
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given are in Appendix B. The complex eigenvalues give the desired
natural frequencies and mode shapes with their phase relations. The natural frequency is
approximately equal to the square root of the real part of the eigenvalue. The modal loss
factor for the nth mode is approximately equal to the ratio of the imaginary part of the
eigenvalue to the real part of the eigenvalue:
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4. IMPROVED ESTIMATE FOR SHAPE FUNCTIONS

Improved estimates for the shape functions f (r) and g (r), are derived from the equation of
elemental stress equilibrium of the second layer. The equations of motion in plane stress
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From equations (21), it is obvious that
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If equations (29) are substituted into equation (28) it is found that
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Substitution of the function w (u, t) into equation (27) with relations (30) and (31), gives
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Using the boundary conditions (4) and (5) for f (r) and g(r), respectively, from equation (33)
the following two boundary value problems are obtained:
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TABLE 1

Comparison of fundamental frequency and loss factor with results from reference [13] for a -at
sandwich beam

[13] Present theory
dggggeggggf dgggggggggggegggggggggggf

a
2
"0)1 a

2
"0)1 a

2
"0

dggggeggggf dggggeggggf dggggeggggf
0 (rad) f (Hz) g f (Hz) g f (Hz) g

0)016 5)99]104 0)0322 6)005]104 0)0317 6)01]104 0)0295
0)026 3)04]104 0)0403 3)04]104 0)0398 3)04]104 0)0377
0)036 1)896]104 0)04 1)9]104 0)0395 1)894]104 0)0377
0)046 1)3]104 0)036 1)309]104 0)0359 1)304]104 0)0341
0)056 9)57]103 0)0319 9)57]103 0)0314 9)54]103 0)0296
0)066 7)295]103 0)0276 7)296]103 0)0273 7)27]103 0)0253
0)076 5)734]103 0)024 5)734]103 0)0236 5)718]103 0)0215
0)086 4)618]103 0)02099 4)616]103 0)0206 4)606]103 0)0184
0)096 3)79]103 0)0184 3)79]103 0)0181 3)785]103 0)0158
0)16 1)46]103 0)0099 1)458]103 0)00976 1)467]103 0)00697
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The functions f (r) and g (r) are in#uenced by both elastic and inertial e!ects, the relative
importance of each depending on the mode. The elastic component typically predominates,
except at a very high frequency. In general, the solution of problems (36) and (37) has no
closed-form solution. In the present implementation, the solution is performed numerically
using the "nite di!erence method.

5. RESULTS AND DISCUSSION

In this section numerical results are presented. The damped natural frequency and loss
factor of a sandwich circular arch with the following speci"cations are computed:
E
1
"E

3
"2)068]1011 Pa; o

1
"o

3
"7850kg/mm3; G

2
"9)8]109Pa; E
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"3G

2
;
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2
"0)1; h

1
"4 mm; h

2
"2)5mm; h

3
"1)5mm; o

2
"2600kg/mm3; R

1
"993)5mm;

R
2
"1000mm; R

3
"1004 mm.

The structure considered is variable length of the arch (¸"16}160 mm). The loss factor
was compared with the values obtained by Zapfe and Lesieutre in reference [22] for a #at
sandwich beam. For a given developed length, if the sandwich ring segment with a very
large radius is assumed to have a very small opening angle, it becomes geometrically close
to a #at beam. The loss factors thus obtained showed excellent agreement with Zapfe and
Lesieutre' results in reference [22]. This agreement is despite the di!erent model in
facesheet.

Most of the earlier theories have ignored the material loss factor in the extension in the
core to obtain simpler theories, a

2
"0. However this restriction may not be valid for

a short, thick cored circular arch. Table 1 thus compares the e!ect of ignoring a
2
on the loss

factor as a function of the angle of the arch. This table shows that the e!ect of ignoring a
2

is
the reduction in the bending mode loss factor.

The eigenproblem of the plane bending of circular arch shaped layered beams was
investigated by using the "nite element method [23]. The comparison between di!erent
approaches makes it possible to obtain more accurate and realistic results. The test example
to be investigated is a three-layered circular ring segment containing two elastic layers of



TABLE 2

Comparison of natural frequencies using di+erent methods (Hz)

n [13, 24] [23] Solid elements Present theory [23] Shell elements

1 18)72 18)17 17)2 15)55
2 94)83 95)50 88)91 84)68
3 210)41 216)40 202)2 197)53
4 353)10 371)52 340)09 348)15
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3 mm thickness and a core of 8 mm thickness. This structure is investigated for constant
radius R

2
"140 mm and constant, (0"n/2) angle of arch. The width of the ring is 6 mm.

The material properties of the circular arch are the following: E
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"2)1]102N/mm2;
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.

The "nite element model of the structure has two}two elements along the face thickness
and three elements along the thickness of the core. The two edges of the circular arch are
simply supported. This model consists of eight node hexahedron 3-D elements (280 pcs.). An
other possible way of building the model of this structure is by using four node composite
shell elements. The model contains the number of elements along the length. As
a composite shell element contains the properties of the layers, this model contains only 40
elements, so the calculation time is much less than in the case of hexahedron elements. The
analytical results are compared with the results of the two di!erent "nite element models in
Table 2.

A #exure of the three-layer sandwich arch results in energy dissipation due to strains
induced in the viscoelastic layer. In a symmetrical arrangement with identical elastic layers,
most of the damping is due to the shear of viscoelastic layer. In an unsymmetrical
arrangement, with dissimilar elastic layers, one might expect damping due to a direct strain
as well as shear in the viscoelastic layer, the former being known as extensional damping
and the latter as shear damping. Both these e!ects have been included by Kovacs [13, 24].
However, the stress}strain law assumed for the viscoelastic layer was not strictly correct
and was only an approximation if extensional e!ects were considered. A comparison
between the present complete approach and that of reference [13] is given in Table 3 for
a speci"c case with the following values: E

1
"E

3
"0)736]105N/mm2; G

1
"G

3
"E

3
/2)5;

h
2
"0)1mm; n"1; o

1
"o

3
"0)28]10~8Ns/mm4; o

2
"o

3
/2; b

2
"a

2
"1)0; h

3
"3mm;

E
2
"0)133]103 N/mm2; G

2
"E

2
/3; R

2
"1000mm; h

1
"16)9 mm.

A signi"cant di!erence is seen for the long circular arch and a smaller value of the modal
number n"1. For a central angle of the circular arch 0"1, 2 (rad), the loss factor obtained
by using the equations of Kovacs [13] is negative which is physically impossible.
The comparison of the damping e!ectiveness obtained by the two approaches gives
signi"cant di!erences for a long circular arch having a constrained viscoelastic layer with
a high value of shear modulus. The di!erence is most marked for the lower resonant modes
(low values of the modal number n). Errors in excess of 100 percent have been
calculated, with the previous work providing an underestimation of the damping
e!ectiveness. The higher the value of the shear modulus, the more important the
contribution from the extensional stress becomes. This in turn a!ects the shear stress
distribution, which is no longer constant across the damping layer as it has been assumed in
the previous work.



TABLE 3

Comparison of fundamental frequency and loss factor with results from reference [13] for
a circular ring segment

[13] Present theory
dggggggggeggggggggf dggggggeggggggf

0 (rad) f (Hz) g f (Hz) g

0)1 7)75]103 0)003 7)89]103 0)00286
0)2 2)19]103 0)0023 2)24]103 0)0021
0)3 9)96]102 0)002 1)01]103 0)002
0)4 5)61]102 0)0021 5)73]102 0)00194
0)5 3)56]102 0)0013 3)63]102 0)00192
0)6 2)44]102 0)0011 2)49]102 0)00191
0)7 1)76]102 0)002 1)79]102 0)0019
0)8 1)32]102 0)0029 1)34]102 0)00189
0)9 1)02]102 0)00048 1)03]102 0)00183
1)0 7)9]10 0)00012 8)14]10 0)00179
1)1 6)23]10 0)0143 6)51]10 0)00187
1)2 4)72]10 !0)001 5)27]10 0)00187
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6. CONCLUSIONS

A new iterative laminate model has been presented for a sandwich circular arch that can
determine accurately the loss factor in short as well as long, sti! cored sandwich arches. This
represents an advance over the previous laminate models, in which accurate estimates of the
loss factor were only possible if short, sti! cored sandwich arches were investigated.
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APPENDIX A

Equations (14)}(18) in the main text contain certain A
ij
, B

ij
, C

ij
and D

ij
terms which are

de"ned as follows:
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Equation (23) in the main text contain K
ij

and M
ij

terms which are de"ned as follows:
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APPENDIX B: NOMENCLATURE

b width of the arch
E
i

elastic modulus of layer i
EH
2

complex modulus in tension
e
r

unit vector in the radial direction
eu unit vector in the transverse direction
e
z

unit vector in the z direction
eui

tensile strain of layer i
f (r) shape function
g(r) shape function
G

i
shear modulus of layer i

GH
2

complex modulus in shear
c
rui

shear strain of layer i
h
i

half-thickness of layer i
u circumferential co-ordinate
n mode number



VIBRATION OF A LAMINATED RING SEGMENT 667
r cylindrical co-ordinate
R

i
radius of center line of layer i

¹ kinetic energy
pui

tensile stress of layer i
q
rui

shear stress of layer i
t
i

displacement vector of layer i
u
1

tangential displacement at the bottom of the "rst layer
u
2

tangential displacement at the top of the "rst layer
u
3

tangential displacement at the bottom of the third layer
u
4

tangential displacement at the top of the third layer
a
2

material loss factor in tension of the second layer
b
2

material loss factor in shear of the second layer
g
n

composite loss factor for the nth mode
u

n
frequency of oscillation in radians for the nth mode

f
n

frequency of oscillation in Hertz for the nth mode
o
i

density of layer i
0 opening angle of ring segment
w radial-displacement component
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